21 References 參考資料: [1] Turgeon, A., & Morse, E. (2024, February 3). Sun. National Geographic Education. https://education. nationalgeographic.org/resource/sun/ [2] NASA Science. (2024). Heliophysics Big Idea 3.1. https://science.nasa.gov/learn/heat/big-ideas/bigidea-3-1/ [3] Petersen, L. (2020, September 27). What Causes the Aurora. https://www.lwpetersen.com/science-andnature/what-causes-the-aurora/ [4] Fox, K. (2018, April 30). The Dynamic Solar Magnetic Field with Introduction. NASA's Scientific Visualization Studio. https://svs.gsfc.nasa.gov/4623/ [5] NASA. (2007, October 22). The Sun-Earth connection. The European Space Agency. https://www.esa.int/ ESA_Multimedia/Images/2007/10/The_Sun-Earth_ connection [6] Frey, H. U., Han, D., Kataoka, R., Lessard, M. R., Milan, S. E., Nishimura, Y., Strangeway, R. J., & Zou, Y. (2019). Dayside Aurora. Space Science Reviews, 215. https:// doi.org/10.1007/s11214-019-0617-7 [7] Day, C. (2001). Spacecraft Probes the Site of Magnetic Reconnection in Earth’s Magnetotail. Physics Today, 54(10), 16–17. https://doi.org/10.1063/1.1420541 [8] Burch, J. L., & Drake, J. F. (2009). Reconnecting Magnetic Fields. American Scientist, 97(5), 392. https:// www.americanscientist.org/article/reconnectingmagnetic-fields [9] Benesch, T. (2013, January 25). Earth’s Magnetosphere. NASA. https://www.nasa.gov/imagearticle/earths-magnetosphere-4/ [10] Bussio, A. (2020, May 15). Variations of particle motion in the Van Allen Belts. Journal of Research in Progress, 3. https://pressbooks.howardcc.edu/jrip3/chapter/ variations-of-particle-motion-in-the-van-allen-belts/ [11] Hutchinson, I. H. (2022). Introduction to Plasma Physics. http://silas.psfc.mit.edu/introplasma/ [12] Evans, J., & Hatfield, M. (2018, November 14). Science on the Cusp: Sounding Rockets Head North. NASA. https://www.nasa.gov/solar-system/science-on-thecusp-sounding-rockets-head-north/#hds-sidebarnav-1 [13] NASA's Goddard Space Flight Center. (2018, September 24). Grand Challenge-Cusp Graphics. NASA Scientific Visualization Studio. https://svs.gsfc. nasa.gov/13076/ [14] The UCAR Center for Science Education. (n.d.). Auroras: The Northern and Southern Lights. https:// scied.ucar.edu/learning-zone/sun-space-weather/ aurora [15] Canadian Space Agency. (2022, September 27). The colours of the northern lights. https://www.asc-csa. gc.ca/eng/astronomy/northern-lights/colours-ofnorthern-lights.asp [16] National Oceanic and Atmospheric Administration. (2013, April 17). Aurora. https://sos.noaa.gov/catalog/ datasets/aurora/ [17] Schmidt, T. (2024, May 14). What causes the different colours of the aurora? An expert explains the electric rainbow. UNSW Newsroom. https://www.unsw.edu.au/ newsroom/news/2024/05/what-causes-the-differentcolours-of-the-aurora-an-expert-explains-theelectric-rainbow 1. 編按:根據安培定律,電流會感生與其強度成正比的磁場。 電子躍遷與極光顏色 抵達兩極的等離子粒子可以與地球大氣層中第二高的 熱成層裡的氣體粒子發生作用 [3, 14]。熱成層的底部主要 由分子氮(N2)和分子氧(O2)組成,而頂部則主要為單原 子氧(O)。氮和氧對於極光的形成至關重要 [3, 15]。 在探討極光原理前,我們必須記住原子中的電子就像 樓梯一樣具有分立的能級。你可以走上整數的梯級,例如 1、2或5級,但您無法走上2.3級或任何整數之間具小 數點的梯級。電子只能透過獲取某些固定值的能量,而被 激發並躍遷到特定能級(或釋放某些固定值的能量而回 到較低能級),而不能停留於介乎兩個能級之間的位置。 每個原子都有自己一套獨特的能級,就像我們每個人的指 紋一樣都是獨一無二的。 等離子粒子與氣體粒子碰撞時會激發原子內的電子。 當電子稍後回到較低能級時,它會以光的形式釋放能量,而 光的波長由釋放的能量所決定。釋放的能量E與光的波長 λ之間的關係可以用方程 表示,當中h是普朗克常數 (6.63 × 10-34 J s),c 則代表光速(3.00 × 108 m s-1)。 由此可以得知釋放的能量與波長成反比,而波長決定了我 們所感知到光的顏色。 原子氧(O)可以發出波長分別為558 nm和630 nm 的綠光和紅光 [3, 16]。另一方面,分子氮(N2)可發出多個 波長的藍光和紅光,它們在較低的海拔高度會形成洋紅色 調 [3, 17]。現在你能明白分立能級所帶來的結果:產生的 極光顏色並不是一個連續而具有所有顏色的光譜,因此只 存在特定顏色的極光。正是這個原理產生令人著迷的北極 光(aurora borealis)和南極光(aurora australis)。
RkJQdWJsaXNoZXIy NDk5Njg=