Page 16 - Science Focus (Issue 19)
P. 16
their presence was not essential for the day-to- since Boyer and Cohen’s success, plasmids have 一樣,使細菌可以更容易在極端環境下生存,儘管質粒對細 以來,質粒一直是生物學家工具箱內一件不可或缺的工具,
day activities of the cell. This discovery came from been an indispensable part of a life scientist’s arsenal, 胞的日常運作來說並不是必需的。這發現源於日本科學家, 它使以前困難的工作,例如控制蛋白質合成或基因靜默
Japanese scientists who studied Shigella bacteria that performing previously difficult feats such as protein 那時他們正在研究一些多種抗生素均不能殺死的志賀氏菌 (gene silencing)等都變得易如反掌。
could not be killed by multiple antibiotics [2]. They production or gene silencing. (Shigella)[2],他們發現某類稱為「抗性因子(R-factors)」
discovered that some plasmids, termed “R-factors” 的質粒就像能為宿主提供對抗抗生素的盾牌一樣,讓宿主 質粒如何成為重要研究工具這個偉大故事,實際上,是
(R for Resistant), conferred anti-antibiotic abilities to This spectacular story of how plasmids became 得到抗生素耐藥性。在現今的生命科學的研究中,質粒中的 由21 年間發生在世界不同地方的小故事編織而成的。儘管
their hosts, akin to giving the bacterial cells shields an essential research tool is, in fact, a culmination of 抗生素抗性基因可謂派上用場,因為它提供了一個方法,讓 質粒的大小毫不起眼,也需要很多科學家花上不少心血才能
against antibiotics. In modern life science research, stories from different parts of the world over a span of 科學家可以消滅那些沒有獲得質粒的細菌,從此篩去沒有攜 揭示當中的奧秘,過程中更凸顯了互相合作這個科學本質。
the presence of antibiotic resistance genes on the 21 years. Despite its unassuming size, the plasmid relied
plasmids can be exploited because it provides a on the work of not one but many scientists to unlock 帶著目標基因的細菌。 1 香港教科書中被翻譯為波耶(Boyer)和柯恩(Cohen)。
method for scientists to eliminate the unwanted its secrets, highlighting the collaborative nature in 2 EcoRI:命名為EcoRI是因為它是從大腸桿菌(Escherichia coli)RY13菌
science.
1
bacteria which did not successfully take up the 最後一個突破發生於 1973 年,Boyer 和 Cohen 製 株中提取的第一種限制酶。
plasmids that carry the “passenger” gene(s) of interest. 造出第一顆人造質粒。當時,科學家已經發現了一些名
1 EcoRI: It was named EcoRI because it was the first enzyme 為「限制酶」的特殊蛋白質,它們可以通過切斷 DNA 之
isolated from Escherichia coli strain RY13.
The final breakthrough came in 1973, when the 間的鍵來切開 DNA。特別的是,Boyer 提取了一隻名為
first artificial plasmid was constructed by Boyer and 在生命科學的世界裡時時刻刻都會出現令人振奮的消 EcoRI 的限制酶,它可以辨認並切割某個特定的 DNA 序 References 參考資料:
2
Cohen. By then, scientists had discovered that special 息。這些年來,極受注目的研究項目有很多,包括黃金大米、 [1] Porterfield, A. (2012, November 9). Who
proteins, known as restriction enzymes, could “cut” 會發光的小鼠、CRISPR 等等。你可能會感到驚訝的是,原來 Found the First Plasmid? Retrieved from
DNA by cleaving its intramolecular bonds. Particularly, https://bitesizebio.com/13522/who-found-
the-first-plasmid/
Boyer has isolated a restriction enzyme, EcoRI , which 這些生物學上的奇蹟背後都全靠一種細小至肉眼也看不到 [2] Microbiology Society. (n.d.) Microbial
1
could recognize and cut a particular sequence of 的東西 — 質粒(plasmid)。 Genomics: Standing on the Shoulders
DNA to produce unpaired DNA bases on one strand, of Giants. Retrieved from https://www.
known as “cohesive end” or “sticky end” (Figure 1) 你可以說現代生物學研究全賴基因編輯技術。自從脫氧 microbiologyresearch.org/sotsog/stanley-
falkow-2
[3]. Armed with this knowledge, he attempted to 核糖核酸(DNA)作為「生命藍圖」的角色得以證實,以及其 [3] Massachusetts Institute of Technology.
make a cut in a circular piece of DNA to insert foreign 特性在多年來被科學家清楚闡明後,DNA 成為了生命科學 (n.d.). Herbert Boyer and Stanley Cohen.
DNA into it. This was, however, unsuccessful as the 研究中不可或缺的一部分。現在,科學家會把外來 DNA 引 Retrieved from https://lemelson.mit.edu/
restriction enzyme cut his circular DNA in multiple 入細胞作為一組額外的指令,做出各種各樣的效果,而使這 resources/herbert-boyer-and-stanley-
cohen
locations, fragmenting it [4]. This setback was later 一切變得可行的就是質粒。在像野獸般龐大的細菌染色體旁 [4] Science History Institute. (2017, December
remedied by Cohen, who met Boyer at a conference 邊,質粒看起來只不過是一顆不顯眼的小點。它是一小段作 1). Herbert W. Boyer and Stanley N. Cohen.
in 1972. Cohen shared with Boyer his plasmid, which 為載體的 DNA:你可以想像它是一輛從境外駛來的車輛,而 Retrieved from https://www.sciencehistory.
the restriction enzyme would cut only at one precise 接載的「乘客」是外來 DNA,車輛穿越了一條名為細胞膜的 org/historical-profile/herbert-w-boyer-and-
stanley-n-cohen
location, and his method to introduce plasmids into 「國界」,把外來 DNA 接載到另一個細胞內,讓它在裡面發
bacteria [3, 4]. In this collaboration, they were able 揮作用。質粒成為實驗室「鎮室之寶」的故事雖然經常被人
to insert a foreign piece of DNA into the plasmid and 遺忘,但卻能使人讚歎。當中涉及不止一個,而是三個重要的
deliver the combined product into bacteria. This was
the first instance of recombinant DNA where DNA 故事。
from different sources were combined and made to
proliferate inside cells, all thanks to the plasmid. Ever 三部曲中的第一部發生於 20 世紀中期。質粒在 1940
年代首次受到科學家關注,當時科學家希望解釋為甚麼一
些性狀能經染色體以外的 DNA 結構遺傳下去,他們偶然發
現了質粒 [1]。起初,不同科學家給這些環狀 DNA 結構取 列,使切割位置兩端內的其中一條 DNA 鏈帶有沒有配對的
了不同的名字,例如「pangene(泛生子)」、「cytogene 鹼基,產 生「黏 端(cohesive end 或 sticky end)」
(細胞質基因)」等,直至 1952 年 Lederberg 才把它們命 (圖一)[3]。利用這個發現,Boyer 嘗試於環狀 DNA 上進
名為日後被廣泛使用的「plasmid(質粒)」[1],並把其定義 行切割並希望將外來 DNA 插入其中。然而這實驗卻以失敗
為「染色體外遺傳物質(hereditary extrachromosomal 告終,因為限制酶在多個位置切割他的那顆環狀 DNA,把
element)」。簡單來說,質粒存在於宿主的染色體外,具有 它切得支離破碎 [4]。後來 Boyer 於 1972 年的一次會議上
獨立地自我複製的能力,而複製過程不受宿主基因組所限。 遇見了 Cohen,後者提供了解決這個難題的方法。Cohen
雖然質粒是獨立於宿主本身的基因組,在細胞分裂時,它仍 把他的質粒分享給 Boyer,那質粒的特別之處在於限制酶
然能夠由母細胞被傳到子細胞,這是它被定義為「遺傳」物 只會準確地在當中的一個位置進行切割。另外 Cohen 亦
質的原因。雖說如此,質粒也未必能一代一代地永遠遺傳下 跟Boyer 分享了他把質粒引入細菌的方法 [3, 4]。在這次
去,而是可能在數次細胞分裂後丟失。 合作中,他們成功把外來的 DNA 片段插入質粒,並將重組
質粒送至細菌內。這是歷史上首次製造出重組 DNA,當中
Figure 1. The restriction enzyme EcoRI recognizes and cleaves
the sequence “GAATTC” to produce cohesive ends. 定下「質粒」這個名字之後不久,科學家發現它們能讓 不同來源的 DNA 被併合在一起,並且能在細胞內進行自我
ྡɓ 限制酶 EcoRI 會辨認及切割「GAATTC」序列,並產生黏端。 宿主得到一些特殊能力,就像附加了一些組件而被升級了 複製 — 這些都要歸功於質粒。自 Boyer 和 Cohen 的成功