Page 8 - Science Focus (Issue 017)
P. 8

Quantum   telepor tation is an
                                                              unfortunate misnomer. Contrary to what portrayals
                                                              from popular media and news titles might suggest
                                                              (like “First teleportation from Earth to orbit” [1]),
                                                              quantum teleportation is closer to a facsimile
                                                              machine than a transporter. It's like copying data
                                                              across two computers, except that here we are
                                                              transmitting the data of particles instead. More
                                                              precisely, it produces a particle at site B identical to
                                                              a particle at another site A without ever physically
                                                              transporting the particle.
                                                                  At first glance, this might appear straightforward.
                                                              All electrons are essentially identical, and identical
                                                              particles are indistinguishable, although they may
                                                              be in different quantum states. If we want to teleport
                                                              an electron at site A to site B, we only need to get
                                                              all parameters that characterize electron A — like
                                                              its position, momentum and spin — and manipulate
                                                              electron B so it has the same parameters. This
                                                              approach is, however, prohibited by Heisenberg’s
                                                              uncertainty principle, which states that one can



                                                          Quantum Teleportation, or How to


                                                                Fax a Particle to the Orbit





                                                                  量 子遙傳 (quantum teleportation) 的 取 名
                                                              其實不太恰當;與大眾媒體或新聞標題給人們的印象
                                                              相反(諸如〈首顆粒子從地球傳送到太空軌道〉(First
                                                              teleportation from Earth to orbit)[1] 等),量子遙傳
                                                              與其說是傳輸,其實更加像傳真。其道理跟在兩台電腦之
                                                              間傳送資料十分類似,不過現在我們只是傳送粒子的資料
                    Figure 1. 圖一
                                                              而已。更準確地說,過程中會在 B 點產生一顆與 A 點粒子
                                                              相同的粒子,而從不需要移動 A 點的粒子。
        1  For readers who learned some quantum mechanics before,
          the uncertainty principle is a direct result of the phenomenon   這乍眼一看不算複雜。所有電子本質上皆完全一樣,不
          of "wavefunction collapse."  A wavefunction collapses   可區分,雖然它們的量子態可能不同。如果我們想把一顆
          whenever it is observed, so information is lost. Interested
          readers can refer to the article "Quantum Mechanics — Your   電子從 A 點傳送到 B 點,我們只需要取得所有描述電子
          Eyes Can Kill Schrödinger's Cat" from Issue 016 for an excellent   A 的參數  — 譬如說,其位置、動量和自旋  — 然後改造電
          introduction.
          如果讀者有接觸過量子力學的話,不確定性原理其實就是「波函數坍縮」                    子 B,使它的所有參數都與電子 A 相同。遺憾地,這個方法
          (wavefunction collapse)的結果。波函數會在觀察之下坍縮,所以           違反海森堡不確定性原理(Heisenberg’s uncertainty
          部分資訊會在過程中損失。感興趣的讀者可以參考第十六期的〈量子力
          學 — 你的雙眼能殺死薛丁格的貓〉,它是一個精彩的引入。                        principle);這原理指出我們永遠都不能得知一顆粒子的
                                                                          1
        2   You might have learned that light is a wave because it   所有物理特性 。所有測量都無可避免地改變物體。譬如說,
          produces interference patterns, but light is also a particle.   我們要照亮一個物體,才可以看到它而知道其位置。光由
          This is a result of wave-particle duality, and again, interested
                                                                              2
          readers can refer to the article in the above footnote.   很微小、名為光子 的粒子組成。儘管一顆光子的大小不
          你可能學過光是波的一種,因為它會產生干涉現象。但光也是一種粒子,                    足以影響宏觀的物體,當我們開始考慮微觀尺度時,光子
          這是波粒二象性(wave-particle duality)的結果。同樣地,感興趣的
          讀者也可以參考以上註腳中的文章。                                    所施的力就會變得越來越顯著。因此,當我們用光子測量
   3   4   5   6   7   8   9   10   11   12   13